Protective Effects of Melatonin and Selenium against Apoptosis of Olfactory Sensory Neurons: A Rat Model Study

Author:

Koc Sema1,Cayli Sevil2,Aksakal Ceyhun3,Ocakli Seda4,Soyalic Harun3,Somuk Battal Tahsin3,Yüce Salim5

Affiliation:

1. Department of ENT Head and Neck Surgery, Antalya Education and Research Hospital, Antalya, Turkey

2. Department of Histology and Embryology, Yildirim Beyazit University School of Medicine, Ankara, Turkey

3. Department of Otorhinolaryngology, Gaziosmanpasa University School of Medicine, Tokat, Turkey

4. Department of Histology and Embryology, Gaziosmanpasa University School of Medicine, Tokat, Turkey

5. Department of Otorhinolaryngology, Cumhuriyet University School of Medicine, Sivas, Turkey

Abstract

Background Selenium plays a role in the prevention of oxidative damage and has been linked to regulatory functions in cell growth, apoptosis, cell survival, and cytotoxicity. Melatonin has an antioxidant effect, which protects against a number of free radical species. Given its antioxidant properties, melatonin has been widely known to inhibit neuronal apoptosis. We examined the cytoprotective effects of melatonin and selenium in rat olfactory sensory neurons after rhinosinusitis by immunohistochemical evaluation of olfactory bulb mucosa. Methods Rhinosinusitis was induced bilaterally in 24 animals. Twenty-four rats were randomly divided into three equal groups. The melatonin group was treated with intraperitoneal (i.p.) melatonin and ampicillin-sulbactam, the selenium group was treated with i.p. selenium and ampicillin-sulbactam, the antibiotic group was treated with i.p. ampicillin-sulbactam; all three groups were treated for 10 days. After a period of 10 days of treatment, the animals were killed for immunohistochemical analyses. All olfactory bulb mucosae were removed immediately. Results No histochemical differences were found in the three groups. Terminal deoxynucleotidyl transferase 2′-deoxyuridine 5′-triphosphate nick end labeling–positive cells were detected in each group. In the antibiotic group, the appearance of apoptotic cells was higher, whereas the number of apoptotic cells significantly decreased in the melatonin group. When compared with the selenium group, fewer terminal deoxynucleotidyl transferase 2′-deoxyuridine 5′-triphosphate nick end labeling–positive cells were observed in the melatonin group, which was not significant. In the antibiotic group, the cytoplasmic active caspase-3 and Bax immunostaining in the olfactory epithelium and glandular cells of stroma were higher when compared with the immunostaining in melatonin and selenium groups. Active caspase-3 and Bax immunostaining in the subepithelial stroma was dramatically reduced in the melatonin group. In contrast, the staining intensity and the number of Bcl-2 immunopositive cells were significantly increased in the melatonin group. In the selenium group, Bax and active caspase-3 were moderately immunopositive in the epithelium and subepithelial stroma. However, Bcl-2 immunostaining was more pronounced in the olfactory epithelium and some stromal cells. Conclusion Our results indicated the possibility that the supplementation of melatonin and selenium, two antioxidant agents for the treatments in the rhinosinusitis rat model, might be reduced or prevent anosmia.

Publisher

SAGE Publications

Subject

General Medicine,Otorhinolaryngology,Immunology and Allergy

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3