Mucin mRNA Expression in Normal and Vasomotor Inferior Turbinates

Author:

Aust Michelle R.1,Madsen Cathy S.2,Jennings Anita2,Kasperbauer Jan L.1,Gendler Sandra J.2

Affiliation:

1. Department of Otorhinolaryngology, Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota

2. Department of Biochemistry and Molecular Biology, Mayo Clinic Scottsdale, Scottsdale, Arizona

Abstract

Mucins are the major glycoprotein component of respiratory tract secretions. Little is known about their expression in the upper respiratory tract. In order to define this expression, in situ hybridization was performed on 19 normal and 4 vasomotor rhinitis (VMR) inferior turbinates to identify mucin mRNA. MUC1, MUC2, MUC4, MUC5AC, MUC5B, and MUC7 were expressed in both the normal and VMR turbinates. MUC 4 and MUC5AC were the most highly expressed mucins. MUC1, MUC2, MUC4, and MUC5AC were expressed mainly by the epithelial border, whereas MUC5B and MUC7 were expressed by the submucosal glands. MUC1 and MUC4 exhibited a diffuse expression by multiple cell types along the mucosal border, whereas MUC2 and MUC5AC expression appeared to be limited to a subpopulation of epithelial cells, most likely goblet cells. Although MUC1, MUC4, and MUC5AC showed sporadic submucosal glandular expression, MUC5B and MUC7 appeared to be the predominant submucosal gland mucins in the inferior turbinates. MUC3 and MUC6 expression, which have been found primarily in the gastric mucosa, were not seen in any of the inferior turbinate samples examined. The only difference seen between normal and VMR turbinates was a slight decrease in MUC1 expression in the VMR group. The variety of mucins expressed and the diversity of their expression patterns may have significance in terms of the rheologic and particle clearance properties of nasal secretions. Understanding the expression patterns in normal turbinates will serve as the foundation for further study of these mucins in disease states.

Publisher

SAGE Publications

Subject

Otorhinolaryngology

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3