A Comparison of Two Methods for Determining Nasal Irritant Sensitivity

Author:

Shusterman Dennis J.1,Balmes John R.1

Affiliation:

1. Upper Airway Biology Laboratory, Division of Occupational and Environmental Medicine, University of California, San Francisco, California

Abstract

Nasal irritation and irritant-induced reflexes (rhinorrhea and congestion) are prominent symptoms associated with indoor and ambient air pollution, and marked heterogeneity in individual sensitivity has been suggested. Nevertheless, there is currently no generally accepted functional index of nasal irritant sensitivity available for clinical use. To address this issue, we compared two objective measures of nasal irritant sensitivity: a CO2 detection task, and CO2-induced transient disruption of respiratory pattern (pulsed CO2 acting as an odorless irritant). Using a respiratory flow thermocouple to produce a continuous recording of respiratory pattern, we challenged 20 normal adult volunteers (13 males and 7 females, average age 39.4 years) with brief (approximately 3 second) pulses of the odorless irritant carbon dioxide. Increasing levels of CO2 (10–70%, vol/vol), paired with filtered air in random order, were presented unilaterally by nasal cannula of fixed geometry, synchronized with the inspiratory phase of the respiratory cycle. All subjects yielded CO2 detection thresholds, whereas within the constraints of the testing method (subjective irritation rating ≤ “very strong”), only 13 of 20 subjects (65%) exhibited transient disruption of their breathing pattern. Further, although decreased respiratory volume (indirectly measured) appeared to be a common feature, several distinct patterns of respiratory alteration were observed, rendering objective scoring more difficult. Finally, some subjects showed CO2-induced respiratory disruption intermittently from trial to trial, implying that rapid adaptation occurs. Determination of the CO2 detection threshold therefore appears to be the more objective and consistently applicable endpoint for determining individual nasal irritant sensitivity.

Publisher

SAGE Publications

Subject

Otorhinolaryngology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Carbon dioxide;Encyclopedia of Toxicology;2024

2. A Novel Device for the Clinical Assessment of Intranasal Trigeminal Sensitivity;Annals of Otology, Rhinology & Laryngology;2014-04-01

3. Exposure study to examine chemosensory effects of formaldehyde on hyposensitive and hypersensitive males;International Archives of Occupational and Environmental Health;2012-02-25

4. Toxicity of Carbon Dioxide: A Review;Chemical Research in Toxicology;2011-07-19

5. The neuronal correlates of intranasal trigeminal function—an ALE meta-analysis of human functional brain imaging data;Brain Research Reviews;2010-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3