Transient Receptor Potential Vanilloid Type 4 Channel Expression in Chronic Rhinosinusitis

Author:

Bhargave Geeta1,Woodworth Bradford A.1,Xiong Guoxiang2,Wolfe Steven G.1,Antunes Marcelo B.1,Cohen Noam A.1

Affiliation:

1. Departments of Otorhinolaryngology-Head and Neck Surgery, Philadelphia, Pennsylvania

2. Departments of Pediatrics, University of Pennsylvania Health System, Philadelphia, Pennsylvania

Abstract

Background Transient receptor potential (TRP) channels are a novel class of nonvoltage gated membrane cation channels that can be activated by mechanical stimulation and temperature change. Recently, TRP vanilloid type 4 (TRPV4) has been implicated in detecting viscosity changes in fallopian tube epithelial cells and inducing a compensatory response in ciliary activity and, as such, represents a possible molecular trigger for modulating respiratory ciliary activity. Thus, the goal of this study was to establish the expression pattern of TRPV4 in human sinonasal mucosa and determine whether expression is altered in chronic rhinosinusitis (CRS). Methods Sinus mucosal biopsy specimens were obtained from patients with CRS, CRS with nasal polyps (NPs), and healthy controls. TRPV4 mRNA and protein expression were confirmed by reverse transcriptase polymerase chain reaction (RT-PCR) and immunoblot analysis, respectively. TRPV4 gene expression was measured next using quantitative RT-PCR. Immunofluorescence was performed on sinus mucosal explants and respiratory epithelial air–liquid interface cultures to localize cellular expression. Results TRPV4 mRNA and protein were expressed in all samples. There was a statistically significant increase (p < 0.05) in TRPV4 gene expression in nonpolypoid CRS patients, but no difference in CRS with NP. Dual label immunofluorescence showed TRPV4 expression to be mutually exclusive of ciliated cells. Conclusion Although TRPV4 represents an ideal molecular trigger for ciliary modulation, absent expression of the channel in ciliated cells precludes this function. However, altered expression of the channel in CRS and presumed expression of TRPV4 in secretory cells of the mucosa indicate a potential role in mucus homeostasis and CRS pathogenesis.

Publisher

SAGE Publications

Subject

Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3