Influence of the Turbinate Volumes as Measured by Magnetic Resonance Imaging on Nasal Air Conditioning

Author:

Lindemann Joerg1,Tsakiropoulou Evangelia2,Vital Victor2,Keck Tilman1,Leiacker Richard1,Pauls Sandra3,Wacke Florian1,Wiesmiller Kerstin M.1

Affiliation:

1. From the Departments of Departments of Otorhinolaryngology

2. 1st Department of Otorhinolaryngology, Aristotle University of Thessaloniki, Thessaloniki, Greece

3. Departments of Diagnostic and Interventional Radiology, University of Ulm, Ulm, Germany

Abstract

Background Changes in nasal airflow caused by varying intranasal volumes and cross-sectional areas affect the contact between air and surrounding mucosa entailing alterations in nasal air conditioning. This study evaluates the correlation between nasal air conditioning and the volumes of the inferior and middle turbinates as measured by magnetic resonance imaging (MRI). Methods Fourteen healthy volunteers were enrolled. Each volunteer had been examined by rhinomanometry, acoustic rhinometry, intranasal air temperature, and humidity measurements at defined intranasal sites as well as MRI of the nasal cavity and the paranasal sinuses. The volumetric data of the turbinates was based on the volumetric software Amira. Results Comparable results were obtained regarding absolute humidity values and temperature values within the nasal valve area and middle turbinate area for both the right and the left side of the nasal cavity. No statistically significant differences were found in the rhinomanometric values and the acoustic rhinometry results of both sides (p > 0.05). No statistical correlations were found between the volumes of the inferior (mean, 6.1 cm3) and middle turbinate (mean, 1.8 cm3) and the corresponding humidity and temperature values. Additionally, the air temperature and humidity values did not correlate with the rhinometrical endonasal volumes (0–20 mm and 20–50 mm from the nasal entrance). Conclusion The normal range of volumes of the inferior and middle turbinate does not seem to have a significant impact on intranasal air conditioning in healthy subjects. The exact limits where alterations of the turbinate volume negatively affect nasal air conditioning are still unknown.

Publisher

SAGE Publications

Subject

General Medicine,Otorhinolaryngology,Immunology and Allergy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3