Abstract
Background: Alcoholism is caused by excessive alcohol into the human body. Alcohol primarily damages the central nervous system of the human body and causes the nervous system function disorder and inhibition. Severe addiction can lead to respiratory circulation center inhibition, paralysis and even death. So far, the diagnosis of alcoholism is done by radiologist's manual CT examination. However, the diagnosis process is time-consuming, subjective and boring for doctors. External factors, such as extreme fatigue, lack of sleep and mental concentration, can easily affect the diagnosis process.Methods: In order to solve this problem, this paper proposed a new neural network based on computer vision, which used deep convolution neural network to diagnose alcoholism automatically. A total of 216 brain images were collected. In the 6-layer customized deep convolution neural network structure, there were four convolution layers and two fully connected layers, and each convolution layer was connected with a pooling layer.Results: The results showed that the accuracy, sensitivity, specificity, precision, F1, MCC and FMI were 95.96%±1.44%, 95.96%±1.66%, 95.95%±1.67%, 95.73%±1.72%, 95.84%±1.48%, 91.92%±2.87% and 95.84%±1.48% respectively.Conclusion: It can be concluded from comparison results that the proposed neural network structure is more effective than four state-of-the-art approaches. The proposed method has high accuracy and can be used as a diagnostic method for alcoholism.
Publisher
Innovation Publishing House Pte. Ltd.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献