Respiratory chain complex I is related to oxidative phosphorylation in gastric cancer stem cells

Author:

Peng Chunwei,Kang Weibiao,Li Yunsong

Abstract

Background: Cancer stem cells (CSCs) are the main cause of resistance to anti-cancer drug therapy and distant metastasis of tumors, including gastric cancer. The metabolism of CSCs is an important factor in the maintenance of its stemness. This study is intended to explore the role of oxidative phosphorylation in gastric CSCs. Methods: EpCAM+CD44+ gastric CSCs were sorted from the SGC-7901 cell line. The oxidative phosphorylation and glycolysis were determined by Seahorse experiment, and the oxygen consumption of cells was determined by Clark’s oxygen electrodes. Gene expression and protein levels of mitochondrial proteins belonging to five respiratory chain complexes were checked. Phenformin and siRNA-NDUFB8 were used to inhibit respiratory chain complex I to explore the biological effect of enhanced oxidation phosphorylation in gastric CSCs. Cell migration capacity, proliferation ability, and vascular endothelial growth factor (VEGF) levels were also evaluated. Results: Compared with control cells, the oxidation phosphorylation in mitochondria increased in EpCAM+CD44+ gastric CSCs, although the respiration level remained the same, and no significant changes were observed in glycolysis. Moreover, mRNA and protein expression levels of NDUFB8 in complex I were significantly increased. However, oxidative phosphorylation decreased in EpCAM+CD44+ cells after the treatment of phenformin and siRNA-NDUFB8 compared to the untreated cells. siRNA for NDFUB8 and phenformin inhibition also decreased the ability of cell migration, cell proliferation, as well as the VEGF secretion of gastric CSCs. Conclusion: These results suggest that the increased oxidative phosphorylation was related to respiratory chain complex I and NDUFB8 in gastric CSCs.

Publisher

Innovation Publishing House Pte. Ltd.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3