Analisis Sentimen Calon Presiden Indonesia 2019 dari Media Sosial Twitter Menggunakan Metode Naive Bayes

Author:

Fitriyyah Sitti Nurul Jannah,Safriadi Novi,Pratama Enda Esyudha

Abstract

Pada tahun 2019 Indonesia akan mengadakan pesta demokrasi pemilihan kepala negara Indonesia. Setiap tokoh politik yang dicalonkan menjadi kepala negara akan mempertimbangkan popularitas mereka berdasarkan opini masyarakat. Sejak diumumkan nama calon Presiden Indonesia 2019 oleh Komisi Pemilihan Umum(KPU) nama-nama tersebut mulai banyak diperbincangkan, terutama di media sosial salah satunya adalah twitter. Terdapat berbagai opini pengguna twitter yang bersentimen negatif positif dan netral. Namun untuk menentukan sentimen dari pengguna twitter membutuhkan usaha dan waktu yang cukup banyak dikarenakan banyaknya jumlah tweet yang digunakan. Dibutuhkan pembelajaran mesin yang dengan cepat dalam pengklasisifikasian tweet tersebut dalam kelas negatif, positif dan netral. Naive Bayes Classifier adalah metode klasifikasi text yang memiliki kecepatan pemrosesan dan akurasi yang cukup tinggi apabila diterapkan pada data yang banyak, besar, dan beragam. Sebelum data tweet diklasifikasikan, data tersebut harus melalui beberapa proses, seperti prepocessing, pembobotan kata dan pemecahan data. Tujuan dari penelitian ini adalah mengetahui bagimana penerapan metode Naive Bayes pada sentimen pengguna twiter di 2 kelas (negatif, positif) dan 3 kelas (negatif, positif, netral). Hasil dari penelitian ini diperoleh bahwa dilakukan pengujian 3 kelas dan 2 kelas untuk setiap pasangan calon (paslon). Pada pengujian 3 kelas paslon 01 dan paslon 02 didapat hasil akurasi berturut-turut sebagai berikut 64,6% dan 58%. Sedangkan pada pengujian 2 kelas paslon 01 dan paslon 02 didapat hasil akurasi berturut-turut sebagai berikut 77,7% dan 88%. Performansi tertinggi terdapat pada calon presiden nomor urut dua dengan nilai f-measure sebesar 0,88.

Publisher

Tanjungpura University

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparison of Machine Learning Methods in Sentiment Analysis PeduliLindungi Applications;2022 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS);2022-11-16

2. Indonesian Marketplace Trust Analysis Using Text Mining: a Case of Tokopedia;2021 International Conference Advancement in Data Science, E-learning and Information Systems (ICADEIS);2021-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3