Shear Bond Strength of Dental Cements on Titanium Alloy: Use of Different Restorative Materials

Author:

Ebadian Behnaz, ,Abbasi Mahsa,Karbasi Mohsen

Abstract

Different dental cements and restorative materials may have various impacts on the shear bond strength (SBS) to titanium alloy of dental implants, and some fluoride-containing cements may destroy the oxide layer of Ti alloys. The aim of this study was to evaluate the retention and SBS of different dental cements to titanium alloy using different restorative materials and also the corrosive effect of dental cements on titanium alloy. In this in-vitro study, a total of ninety titanium alloy discs (10×3 mm) and restorative material discs (7×3mm) consisting of Co-Cr soft metal, zirconia, and Ni-Cr were constructed. Three dental cement of 2 different compositional classes, glass ionomer (GI) and zinc phosphate (ZP), were used to cement the discs (n=10 in each paired disks). SBS was evaluated using a universal testing machine with a cross-head speed of 1mm/min. A stereomicroscope (×32) and a scanning electron microscope were used to determine the fracture pattern and titanium corrosion, respectively. Data were then analyzed statistically using one-way ANOVA and Tamhane comparison test (P<0.05). The mean SBS of studied groups ranged from 0.12±0.07 to 6.2±0.97 Mpa, with the Ni-Cr and zirconia were demonstrated as the materials with the highest and lowest SBS to GI and ZP, respectively. The cements created a strong bond to the Co-Cr soft metal while the GI cement remained on restorative material disc surfaces in all samples, except in the zirconia sample. Mixed patterns were mostly seen in ZP cement groups. To conclude, applying fluoride-containing cements have no effect on titanium.

Publisher

Majalah Kedokteran Bandung

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3