Affiliation:
1. Maestría en Ingeniería Agrícola, Instituto de Postgrado, Universidad Técnica de Manabí, Ecuador
2. Facultad de Ingeniería Agrícola, Universidad Técnica de Manabí, Ecuador
Abstract
Precision agriculture allows to gain efficiency, sustainability and profitability, since it provides great benefits in reducing the environmental impact of agriculture, economic risks and at the same time contributes to controlling the vigor of crops and improving the quality of their yield. The objective of this research is to discriminate weeds within the corn crop, based on their spectral response. For this, the advanced EBEE SQ agricultural drone was used, with which multispectral images were captured through its Parrot Sequoia camera. The images were processed with software in Geographic Information Systems (GIS). With the multispectral bands, different vegetation indices were calculated such as NDVI, NDVIAS, NGRDI, NDRE, GNDVI, using map algebra tools in specialized programs. A supervised classification was applied to the different indices to discriminate the different land covers, which obtained a precision of 93% and a Kappa index of 0.93. The results allowed to clearly differentiate the coverage of crops, weeds and bare soil. The data showed that both early-growing and developed weeds occupy 38% of the crop area. With this information, it is possible to improve the planning of agronomic practices, adding the herbicide at the specific site of the weeds.
Reference33 articles.
1. Adão, T., J. Hruška, L. Pádua, J. Bessa, E. Peres, R. Morais and J. Sousa. 2017. Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Journal Remote Sens. 9(11), 2-30.
2. ArcGIS. 2016. Método de clasificación. Plataforma de representación cartográfica. Disponible en: https://doc.arcgis.com/es/maps-for-office/4.0/design-and-use/classification-methods.htm. Fecha de consulta: agosto 2020.
3. Barrero, O. and S. Perdomo. 2018. RGB and multispectral UAV image fusion for Gramineae weed detection in rice fields. Journal Precision Agric. 19, 809–822.
4. Berrío, V., J. Mosquera y D. Alzate. 2015. Uso de drones para el análisis de imágenes multiespectrales en agricultura de precisión. Rev. Cienc. Tec. Aliment. 13(1), 28-40.
5. Campos, J., M. Gallart, J. Llop, R. Salcedo, P. Ortega, E. Armengol y E. Gil. 2019. Comprobación de un sistema de aplicación variable basado en mapas de vegetación obtenidos con un vehículo aéreo no tripulado (UAV). Huesca. Universidad Politécnica de Cataluña. X Congreso Ibérico de Agroingeniería. Disponible en: https://zaguan.unizar.es/record/84473/files/3431.pdf. Fecha de consulta: marzo 2020.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献