Ultrafast Computation of Left Ventricular Ejection Fraction by Using Temporal Intensity Variation in Cine Cardiac Magnetic Resonance

Author:

Pednekar Amol S.1,Cheong Benjamin Y.C.23,Muthupillai Raja23

Affiliation:

1. Philips Healthcare, Cleveland, Ohio

2. Department of Radiology, CHI St. Luke's Health–Baylor St. Luke's Medical Center, Houston, Texas

3. Department of Cardiology, Texas Heart Institute, Houston, Texas

Abstract

Cardiac magnetic resonance enables comprehensive cardiac evaluation; however, intense time and labor requirements for data acquisition and processing have discouraged many clinicians from using it. We have developed an alternative image-processing algorithm that requires minimal user interaction: an ultrafast algorithm that computes left ventricular ejection fraction (LVEF) by using temporal intensity variation in cine balanced steady-state free precession (bSSFP) short-axis images, with or without contrast medium. We evaluated the algorithm's performance against an expert observer's analysis for segmenting the LV cavity in 65 study participants (LVEF range, 12%–70%). In 12 instances, contrast medium was administered before cine imaging. Bland-Altman analysis revealed quantitative effects of LV basal, midcavity, and apical morphologic variation on the algorithm's accuracy. Total computation time for the LV stack was <2.5 seconds. The algorithm accurately delineated endocardial boundaries in 1,132 of 1,216 slices (93%). When contours in the extreme basal and apical slices were not adequate, they were replaced with manually drawn contours. The Bland-Altman mean differences were <1.2 mL (0.8%) for end-diastolic volume, <5 mL (6%) for end-systolic volume, and <3% for LVEF. Standard deviation of the difference was ≤4.1% of LV volume for all sections except the midcavity in end-systole (8.3% of end-systolic volume). We conclude that temporal intensity variation–based ultrafast LVEF computation is clinically accurate across a range of LV shapes and wall motions and is suitable for postcontrast cine SSFP imaging. Our algorithm enables real-time processing of cine bSSFP images on a commercial scanner console within 3 seconds in an unobtrusive automated process.

Publisher

Texas Heart Institute Journal

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3