Identification of White Blood Cells Using Machine Learning Classification Based on Feature Extraction

Author:

Musliman Anwar Siswanto,Fadlil Abdul,Yudhana Anton

Abstract

In various disease diagnoses, one of the parameters is white blood cells, consisting of eosinophils, basophils, neutrophils, lymphocytes, and monocytes. Manual identification takes a long time and tends to be subjective depending on the staff's experience, so the automatic identification of white blood cells will be faster and more accurate. White blood cells are identified by examining a colored blood smear (SADT) and examined under a digital microscope to obtain a cell image. Image identification of white blood cells is determined through HSV color space segmentation (Hue, Saturation Value) and feature extraction of the Gray Level Cooccurrence Matrix (GLCM) method using the Angular Second Moment (ASM), Contrast, Entropy, and Inverse Different Moment (IDM) features. The purpose of this study was to identify white blood cells by comparing the classification accuracy of the K-nearest neighbor (KNN), Naïve Bayes Classification (NBC), and Multilayer Perceptron (MLP) methods. The classification results of 100 training data and 50 white blood cell image testing data. Tests on the KNN, NBC, and MLP methods yielded an accuracy of 82%, 80%, and 94%, respectively. Therefore, MLP was chosen as the best classification model in the identification of white blood cells.

Publisher

Sunan Gunung Djati State Islamic University of Bandung

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SVM-CNN Hybrid Classification for Waste Image Using Morphology and HSV Color Model Image Processing;Traitement du Signal;2023-08-31

2. Identification of glucose levels in urine based on classification using k-nearest neighbor algorithm method;International Journal on Smart Sensing and Intelligent Systems;2023-01-01

3. Comparison of CNN Architecture for White Blood Cells Image Classification;2022 IEEE International Conference of Computer Science and Information Technology (ICOSNIKOM);2022-10-19

4. Classification of gram-positive and gram-negative bacterial images based on machine learning algorithm;2022 5th International Conference on Information and Communications Technology (ICOIACT);2022-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3