Machine Learning Monitoring Model for Fertilization and Irrigation to Support Sustainable Cassava Production: Systematic Literature Review

Author:

Chusyairi Ahmad,Herdiyeni Yeni,Sukoco Heru,Santosa Edi

Abstract

The manual and time-consuming nature of current agronomic technology monitoring of fertilizer and irrigation requirements, the possibility of overusing fertilizer and water, the size of cassava plantations, and the scarcity of human resources are among its drawbacks. Efforts to increase the yield of cassava plants > 40 tons per ha include monitoring fertilization approach or treatment, as well as water stress or drought using UAVs and deep learning. The novel aspect of this research is the creation of a monitoring model for the irrigation and fertilizer to support sustainable cassava production. This study emphasizes the use of Unnamed Aerial Vehicle (UAV) imagery for evaluating the irrigation and fertilization status of cassava crops. The UAV is processed by building an orthomosaic, labeling, extracting features, and Convolutional Neural Network (CNN) modeling. The outcomes are then analyzed to determine the requirements for air pressure and fertilization. Important new information on the application of UAV technology, multispectral imaging, thermal imaging, among the vegetation indices are the Soil-Adjusted Vegetation Index (SAVI), Leaf Color Index (LCI), Leaf Area Index (LAI), Normalized Difference Water Index (NDWI), Normalized Difference Red Edge Index (NDRE), and Green Normalized Difference Vegetation Index (GNDVI).

Publisher

Sunan Gunung Djati State Islamic University of Bandung

Reference50 articles.

1. [1] J. Widodo, Peraturan Presiden Republik Indonesia Nomor 125 Tahun 2022 tentang Penyelenggaraan Cadangan Pangan Pemerintah. Indonesia, 2022, pp. 1–17.

2. [2] R. Chaerani, D. Agustanto, R. A. Wahyu, and P. Nainggolan, ‘Ketahanan Pangan Berkelanjutan’, Jurnal Kependudukan dan Pembangunan Lingkungan (JKPL), vol. 1, no. 2, pp. 23–32, 2020.

3. [3] K. Harrington et al., ‘Global Food Security Index 2022’, New York, United States, 2022.

4. [4] S. Marliah, 13 Tanaman Pangan yang Dapat Kamu Budidayakan di Rumah. Jakarta: Gramedia, 2022.

5. [5] T. Waluyo, ‘Pemanfaatan Hormon Tumbuh Organik Untuk Meningkatkan Produktivitas Singkong Hasil Eksplorasi Seleksi Bibit Unggul’, Jurnal Ilmu dan Budaya, vol. 41, no. 70, pp. 8207–8217, 2020.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3