Perbandingan Teknik Klasifikasi Dalam Data Mining Untuk Bank Direct Marketing

Author:

Oktanisa Irvi,Supianto Ahmad Afif

Abstract

<p class="Abstrak">Klasifikasi merupakan teknik dalam <em>data mining</em> untuk mengelompokkan data berdasarkan keterikatan data terhadap  data sampel. Pada penelitian ini, kami melakukan perbandingan 9 teknik klasifikasi untuk mengklasifikasi respon pelanggan pada <em>dataset Bank Direct Marketing</em>. Perbandingan teknik klasifikasi ini dilakukan untuk mengetahui model dalam teknik klasfikasi yang paling efektif untuk mengklasifikasi target pada <em>dataset Bank Direct Marketing</em>. Teknik klasifikasi yang digunakan yaitu <em>Support Vector Machine</em>, <em>AdaBoost</em>, <em>Naïve Bayes</em>, <em>Constant, KNN, Tree, Random Forest, Stochastic Gradient Descent</em>, dan <em>CN2 Rule</em>. Proses klasifikasi diawali dengan <em>preprocessing</em> data untuk melakukan penghilangan <em>missing value</em> dan pemilihan fitur pada <em>dataset</em>. Pada tahap evaluasi digunakan teknik <em>10 fold cross validation</em>. Setelah dilakukan pengujian, didapatkan bahwa hasil klasifikasi menunjukkan akurasi terbaik diperoleh oleh model <em>Tree, Constant</em>, <em>Naive Bayes</em>, dan <em>Stochastic Gardient Descent</em>. Kemudian diikuti oleh model <em>Random Forest</em>, <em>K-Nearest Neighbor</em>, <em>CN-2 Rule</em>, <em>AdaBoost</em> dan <em>Support Vector Machine</em>. Dari keempat model yang menunjukkan hasil akurasi terbaik, untuk kasus ini <em>Stochastic Gradient Descent</em> terpilih sebagai model yang memiliki akurasi terbaik dengan nilai akurasi sebesar 0,972 dan hasil visualisasi yang dihasilkan lebih jelas untuk mengklasifikasi target pada <em>dataset Bank Direct Marketing</em>.</p><p class="Abstrak"><em><strong><br /></strong></em></p><p class="Abstrak"><em><strong>Abstract</strong></em></p>Classification is a technique in data mining to classify data based on the attachment of data to the sample data.. In this paper, we present the comparison of  9 classification techniques performed to classify customer response on the dataset of Bank Direct Marketing. The techniques performed to find out the effectiveness model in the classification technique used to classify targets on the dataset of Bank Direct Marketing. The techniques used are Support Vector Machine, AdaBoost, Naïve Bayes, Constant, KNN, Tree, Random Forest, Stochastic Gradient Descent, and CN2 Rule. The classification process begins with preprocessing data to perform missing value omissions and feature selection on the dataset. Cross validation technique, with k value is 10, used in the evaluation stage. After testing, it was found that the classification results showed the best accuracy obtained when using the Tree model, Constant, Naive Bayes and Stochastic Gradient Descent. Afterwards the Random Forest model, K-Nearest Neighbor, CN-2 Rule, AdaBoost, and Support Vector Machine are followed. Of the four models with the high accuracy results, in this case Stochastic Gradient Descent was selected as the best accuracy model with an accuracy value of 0.972 and resulting visualization more clearly to classify targets on the dataset of Bank Direct Marketing.

Publisher

Fakultas Ilmu Komputer Universitas Brawijaya

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Orange Software Usage in Data Mining Classification Method on The Dataset Lenses;IOP Conference Series: Materials Science and Engineering;2020-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3