Klasifikasi Laporan Keluhan Pelayanan Publik Berdasarkan Instansi Menggunakan Metode LDA-SVM

Author:

Alkaff Muhammad,Baskara Andreyan Rizky,Maulani Irham

Abstract

<p>Sebuah sistem layanan untuk menyampaikan aspirasi dan keluhan masyarakat terhadap layanan pemerintah Indonesia, bernama Lapor! Pemerintah sudah lama memanfaatkan sistem tersebut untuk menjawab permasalahan masyarakat Indonesia terkait permasalahan birokrasi. Namun, peningkatan volume laporan dan pemilahan laporan yang dilakukan oleh operator dengan membaca setiap keluhan yang masuk melalui sistem menyebabkan sering terjadi kesalahan dimana operator meneruskan laporan tersebut ke instansi yang salah. Oleh karena itu, diperlukan suatu solusi yang dapat menentukan konteks laporan secara otomatis dengan menggunakan teknik Natural Language Processing. Penelitian ini bertujuan untuk membangun klasifikasi laporan secara otomatis berdasarkan topik laporan yang ditujukan kepada instansi yang berwenang dengan menggabungkan metode Latent Dirichlet Allocation (LDA) dan Support Vector Machine (SVM). Proses pemodelan topik untuk setiap laporan dilakukan dengan menggunakan metode LDA. Metode ini mengekstrak laporan untuk menemukan pola tertentu dalam dokumen yang akan menghasilkan keluaran dalam nilai distribusi topik. Selanjutnya, proses klasifikasi untuk menentukan laporan agensi tujuan dilakukan dengan menggunakan SVM berdasarkan nilai topik yang diekstraksi dengan metode LDA. Performa model LDA-SVM diukur dengan menggunakan confusion matrix dengan menghitung nilai akurasi, presisi, recall, dan F1 Score. Hasil pengujian menggunakan teknik split train-test dengan skor 70:30 menunjukkan bahwa model menghasilkan kinerja yang baik dengan akurasi 79,85%, presisi 79,98%, recall 72,37%, dan Skor F1 74,67%.</p><p> </p><p><em><strong>Abstract</strong></em></p><p><em>A service system to convey aspirations and complaints from the public against Indonesia's government services, named Lapor! The Government has used the Government for a long time to answer the problems of the Indonesian people related to bureaucratic problems. However, the increasing volume of reports and the sorting of reports carried out by operators by reading every complaint that comes through the system cause frequent errors where operators forward the reports to the wrong agencies. Therefore, we need a solution that can automatically determine the report's context using Natural Language Processing techniques. This study aims to build automatic report classifications based on report topics addressed to authorized agencies by combining Latent Dirichlet Allocation (LDA) and Support Vector Machine (SVM). The topic-modeling process for each report was carried out using the LDA method. This method extracts reports to find specific patterns in documents that will produce output in topic distribution values. Furthermore, the classification process to determine the report's destination agency carried out using the SVM based on the value of the topics extracted by the LDA method. The LDA-SVM model's performance is measured using a confusion matrix by calculating the value of accuracy, precision, recall, and F1 Score. The test results using the train-test split technique with a 70:30 show that the model produces good performance with 79.85% accuracy, 79.98% precision, 72.37% recall, and 74.67% F1 Score</em></p><p><em><strong><br /></strong></em></p>

Publisher

Fakultas Ilmu Komputer Universitas Brawijaya

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid Model for Topic Classification of English Learning Accounts on Instagram Using LDA and SVM;2023 10th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI);2023-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3