Development of Big Data App for Classification based on Map Reduce of Naive Bayes with or without Web and Mobile Interface by RESTful API Using Hadoop and Spark

Author:

Cholissodin ImamORCID,Seruni Diajeng Sekar,Zulqornain Junda Alfiah,Hanafi Audi Nuermey,Ghofur Afwan,Alexander Mikhael,Hasan Muhammad Ismail

Abstract

Big Data App is a developed framework that we made based on our previous project research and we have uploaded it on github, which is developing lightweight serverless both on Windows and Linux OS with the term of EdUBig as Open Source Hadoop Distribution. In this study, the focus is on solving problems related to difficulties in building a frontend and backend model of a Big Data application which by default only runs scripts through consoles in the terminal. This will be quite a tribulation for the end users when the Big Data application has been released and mass produced to general users (end users) and at the same time how the end users test the performance of the Map Reduce Naive Bayes algorithm used in several datasets. In accordance to these problems, we created the Big Data App framework to make the end users, especially developers, feel easier to build a Big Data application by integrating the frontend using the Web App from Django framework and Mobile App Native, while for the backend, we use Django framework that is able to communicate directly with the script either hadoop batch, streaming processing or spark streaming very easily and also to use the script for pig, hive, web hdfs, sqoop, oozie, etc. the making of which is extremely fast with reliable results. Based on the test results, a very significant result in the ease of data computation processing by the end users and the final results showing the highest classification accuracy of 88.3576% was obtained.Keywords: big data, map reduce of naive bayes, serverless, web and mobile app, restful api, django framework

Publisher

Fakultas Ilmu Komputer Universitas Brawijaya

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Bayesian Algorithm in Risk Quantification for Network Security;Computational Intelligence and Neuroscience;2022-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3