Abstract
In the banking sector, credit risk assessment is an important process to ensure that loans could be paid on time, and that banks could maintain their credit performance effectively. Despite restless business efforts allocated to credit scoring yearly, high percentage of loan defaulting remains a major issue. With the availability of tremendous banking data and advanced analytics tools, data mining algorithms can be applied to develop a platform of credit scoring, and to resolve the loan defaulting problem. This paper puts forward a framework to compare four classification algorithms, including logistic regression, decision tree, neural network, and Xgboost, using a public dataset. Confusion matrix and Monte Carlo simulation benchmarks are used to evaluate their performance. We find that the XGboost outperforms the other three traditional models. We also offer practial recommendation and future research.
Publisher
Fakultas Ilmu Komputer Universitas Brawijaya
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimizing Vehicle Loan Default Detection with Synthetic Balancing Techniques;2023 10th International Conference on Soft Computing & Machine Intelligence (ISCMI);2023-11-25