Parental Protein Malnutrition Programmes of Offspring Growth and Vasculature to Increase Risk of Cardiovascular, Pancreatic, and Metabolic Disease. Lessons Learned from Animal Studies

Author:

Ruiz-Diaz Maria Dolores1,Partridge Hannah1,Davidson Francesca1,Mongan Nigel P.2,Gardner David S.1,Rutland Catrin Sian1

Affiliation:

1. Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK

2. Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK; Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York City, New York, USA

Abstract

It is well known that consumption of a balanced diet throughout adulthood is key toward maintenance of optimal body weight and cardiovascular health. Research using animal models can provide insights into the programming of short and long-term health by parental diet and potential mechanisms by which, for example, protein intake may influence fetal development, adolescent health, and adult morbidity/ mortality. Malnutrition, whether consumption of too many or too few individual nutrients or energy, is detrimental to health. For example, in Westernised societies, one of the principal factors contributing towards the global epidemic of obesity is over-consumption of calories, relative to the expenditure of calories through physical activity. A large body of evidence now suggests that many chronic diseases of adulthood, such as obesity and diabetes, are linked to the nutritional environment experienced by the fetus in utero. Maternal consumption of a poor-quality, nutritionally unbalanced diet can programme offspring to become obese, develop high blood pressure and diabetes, and to experience premature morbidity and mortality. More recently, paternal diet has also been shown to influence offspring health through effects carried via the sperm that affect post-fertilisation development. Mechanisms underpinning such developmental programming effects remain elusive, although early development of the microvasculature in the heart and pancreas, particularly after exposure of the mother (or father) to a protein restricted diet, has been proposed as one mechanism linking early diet to perturbed adult function. In this brief review, we explore the longer-term consequences of maternal and paternal protein intakes on the progeny. Using evidence from relevant animal models, we illustrate how protein malnutrition may ‘programme’ lifelong health and disease outcomes, especially in relation to pancreatic function and insulin resistance, and cardiac abnormalities.

Publisher

European Medical Group

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3