Assessment of growth and phytochemical quality of Gynura procumbens through nitrogen, potassium fertilization and evapotranspiration replacement interaction

Author:

Mohamad Bukhori Mohamad Fhaizal1,Jaafar Hawa ZE1,Ghasemzadeh Ali1,Sinniah Uma Rani1,Karipaya Gayatri2,Yusuf Keezrawati Mujan3

Affiliation:

1. Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia

2. Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

3. Faculty of Language and Communication, Universiti Malaysia Sarawak, 94300 Samarahan, Sarawak, Malaysia

Abstract

Despite the progressive reports on potential pharmacological properties of G. procumbens, the importance of agronomic requirements to produce high yields and phytochemical content that may vary due to environmental variations are often overlooked. Therefore, this study was conducted to examine the effects of N, K and ER interaction on the growth and phytochemical content of G. procumbens. The study was a three-factorial experiment; two rates of N and K, four rates of ER and three H time. The treatments have affected plant growth and phytochemical content significantly (p≤0.05) with stronger effect on physiology and biochemical attributes (p≤0.01). The study has shown discrete effect on growth, physiology, and phytochemicals content with N0K30>N90K0 and ER 75>50>100>25% treatment. The highest and lowest yield of plant biomass and phytochemical were observed under N0K30(70) and N90K0(25), respectively. The results have shown that the interaction and effect of treatments are highly significant (p≤0.0001) in Cond, CNB, TChlC, TPrC and TFC analysis, (p≤0.05) in NoL, CF and PWP, and not significant in TLA, Photo, TCC, TLC and TPC. The 75% ER has produced significant output of biomass as well as phytochemical content. The study also showed that low rate of N, moderate rate of K with 75% ER have produced high biomass as well as phytochemical content. Meanwhile, caffeic acid and kaempferol were demonstrated as the lead secondary metabolite compounds in this study.

Publisher

Malaysian Society for Molecular Biology and Biotechnology

Subject

Molecular Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3