Enhancement of very high gravity bioethanol production via fed-batch fermentation using sago hampas as a substrate

Author:

Muradi Nur Adila1,Awang Adeni Dayang Salwani1,Suhaili Nurashikin1

Affiliation:

1. Resource Biotechnology Programme, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

Abstract

Very high gravity (VHG) ethanolic fermentation is a promising technology used for producing bioethanol. However, the technology is often associated with the excessive amount of glucose that is entirely supplied in the beginning of the culture causing the fermentation process to be sluggish and therefore inhibits complete utilisation of glucose. The high concentration of glucose in the fermentation medium also elevates the osmotic pressure, which has a destructive effect on yeast cells. This study aims to enhance the production of VHG bioethanol from sago hampas hydrolysate (SHH) via fed-batch fermentation. The fermentations were performed in a 2-L stirred tank bioreactor. Batch fermentation was conducted as a control. Our results showed that the maximum yeast cell concentration achieved was significantly improved by 1.5-fold when the fermentation was carried out in fed-batch mode. The ethanol yield attained in the fed-batch culture represents an enhancement of 22% over that achieved in the batch culture. Moreover, the ethanol productivity achieved in the fed-batch culture was found to be increased by 1.8 times in comparison to the productivity attained in the batch culture. In general, this work provides useful insights into promising techniques for enhancing VHG fermentations in the stirred tank bioreactor employing agricultural residues as feedstocks.

Funder

Ministry of Higher Education, Malaysia

Publisher

Malaysian Society for Molecular Biology and Biotechnology

Subject

Molecular Biology,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3