Identification of potential mutations associated with multidrug resistance among isolates of Mycobacterium tuberculosis in Malaysia by in silico screening

Author:

Teh Hui Wen1,Citartan Marimuthu1,Yusof Hamdani Hazrina1,Salleh Mohamad Zaki2,Teh Lay Kek2,Noorizhab Mohd Nur Fakhruzzaman2,Tang Thean-Hock1

Affiliation:

1. Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia

2. Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi Mara (UiTM), Bandar Puncak Alam, 42300, Selangor, Malaysia

Abstract

The emergence of multidrug resistance tuberculosis (MDR-TB) is caused by Mycobacterium tuberculosis (MTB) adaptation to survive in the presence of antibiotic, that were contributed by mutations in the MDR-associated genes. Previous research has indicated that the gene expression knockdown of fhaA leads to an accumulation of peptidoglycan (PG) precursors at the bacillary septum and poles, which suggest a possible deficiency in PG biosynthesis. Consequently, the cell wall becomes resistant to antibiotics, leading to multidrug resistance (MDR). In this study, bioinformatics analyses were performed on MDR-TB isolates from 24 clinical samples to search for novel mutations that contribute to antibiotic resistance. We found out a potential deletion of nucleotides encoding 6 amino acids in all 12 samples, particularly in fhaA gene (RV0020c). Our subsequent structural analysis shows that the deletion is at the position 243-248, causing conformational change of the native FhaA protein. We postulated that the deletion will potentially cause the loss of its binding affinity to MviN (precursor) and STPK (protein kinase), resulting in the inhibition and blockage of the peptidoglycan polymerization, causing MDR in MTB. In the future, experimental validation is necessitated to substantiate the association of these mutations with MDR.

Publisher

Malaysian Society for Molecular Biology and Biotechnology

Subject

Molecular Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3