Angiotensin converting enzyme inhibitor captopril prevents neuronal overexpression of amyloid-beta and alpha-synuclein in Drosophila melanogaster genetic models of neurodegenerative diseases

Author:

Ishola Ismail,Afolayan Olasunmbo,Badru Adedeji,Olubodun-obadun Taiwo,John Nkechi,Adeyemi Olufunmilayo

Abstract

Background: Parkinson disease (PD) and Alzheimer’s disease (AD) are progressive neurodegenerative disorders characterized by loss of selective neurons in discreet part of the brain. The peptide angiotensin II (Ang II) plays significant role in hippocampal and striatal neurons degeneration through the generation of reactive oxygen species. Blockade of the angiotensin converting enzyme or ATI receptors provides protection in animal models of neurodegenerative diseases. In the present study, the neuroprotective effect of captopril was investigated in Drosophila melanogaster model using the UAS-GAL4 system to express the synuclein and Aβ42 peptide in the flies’ neurons. Methods: The disease causing human Aβ42 peptide or α-syn was expressed pan-neuronally (elav-GAL4) or dopamine neuron (DDC-GAL4) using the UAS-GAL4 system. Flies were either grown in food media with or without captopril (1, 5, or 10µM). This was followed by fecundity, larva motility, negative geotaxis assay (climbing) and lifespan as a measure of neurodegeneration. Results: Elav-Gal4<Aβ or DDC-GAL4<α-syn flies displayed significant decrease in larva motility when compared with normal control (w1118) which was reversed by the supplementation of the media with captopril (5 or 10 mM) indicative of neuroprotection. Interestingly, supplementation of flies’ media with captopril improved climbing activity in Elav-Gal4<Aβ or DDC-GAL4<α-syn flies when compared with vehicle treated only. Moreover, flies grown on captopril caused no significant change in lifespan.  Conclusion: Findings from this study confirmed the neuroprotective action of captopril in genetic or familial forms of neurodegeneration.

Publisher

Physiological Society of Nigeria

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3