Identifying Optimal Baseline Variant of Unsupervised Term Weighting in Question Classification Based on Bloom Taxonomy

Author:

Sangodiah Anbuselvan,Jee San Tham,Tien Fui Yong,Ean Heng Lim,Ayyasamy Ramesh Kumar,A Jalil Norazira

Abstract

Examination is one of the common ways to evaluate the students’ cognitive levels in higher education institutions. Exam questions are labeled manually by educators in accordance with Bloom’s taxonomy cognitive domain. To ease the burden of the educators, several past research works have proposed the automated question classification based on Bloom’s taxonomy using the machine learning technique. Feature selection, feature extraction and term weighting are common ways to improve the accuracy of question classification. Commonly used term weighting method in the past work is unsupervised namely TF and TF-IDF. There are several variants of TF and TFIDF and the most optimal variant has yet to be identified in the context of question classification based on BT. Therefore, this paper aims to study the TF, TF-IDF and normalized TF-IDF variants and identify the optimal variant that can enhance the exam question classification accuracy. To investigate the variants two different classifiers were used, which are Support Vector Machine (SVM) and Naïve Bayes. The average accuracies achieved by TF-IDF and normalized TF-IDF variants using SVM classifier were 64.3% and 72.4% respectively, while using Naïve Bayes classifier the average accuracies for TF-IDF and normalized TF-IDF were 61.9% and 63.0% respectively. Generally, the normalized TF-IDF variants outperformed TF and TF-IDF variants in accuracy and F1-measure respectively. Further statistical analysis using t-test and Wilcoxon Signed also shows that the differences in accuracy between normalized TF-IDF and TF, TF-IDF are significant. The findings from this study show that the Normalized TF-IDF3 variant recorded the highest accuracy of 74.0% among normalized TF-IDF variants. Also, the differences in accuracy between Normalized TF-IDF3 and other normalized variants are generally significant, thus the optimal variant is Normalized TF-IDF3. Therefore, the normalized TF-IDF3 variant is important for benchmarking purposes, which can be used to compare with other term weighting techniques in future work.

Publisher

Brno University of Technology

Subject

Computational Mathematics,General Computer Science,Theoretical Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3