Employing Texture Features of Chest X-Ray Images and Machine Learning in COVID-19 Detection and Classification

Author:

Alquran Hiam,Alsleti Mohammad,Alsharif Roaa,Abu Qasmieh Isam,Alqudah Ali Mohammad,Binti Harun Nor Hazlyna

Abstract

The novel coronavirus (nCoV-19) was first detected in December 2019. It had spread worldwide and was declared coronavirus disease (COVID-19) pandemic by March 2020. Patients presented with a wide range of symptoms affecting multiple organ systems predominantly the lungs. Severe cases required intensive care unit (ICU) admissions while there were asymptomatic cases as well. Although early detection of the COVID-19 virus by Real-time reverse transcription-polymerase chain reaction (RT-PCR) is effective, it is not efficient; as there can be false negatives, it is time consuming and expensive. To increase the accuracy of in-vivo detection, radiological image-based methods like a simple chest X-ray (CXR) can be utilized. This reduces the false negatives as compared to solely using the RT-PCR technique. This paper employs various image processing techniques besides extracted texture features from the radiological images and feeds them to different artificial intelligence (AI) scenarios to distinguish between normal, pneumonia, and COVID-19 cases. The best scenario is then adopted to build an automated system that can segment the chest region from the acquired image, enhance the segmented region then extract the texture features, and finally, classify it into one of the three classes. The best overall accuracy achieved is 93.1% by exploiting Ensemble classifier. Utilizing radiological data to conform to a machine learning format reduces the detection time and increase the chances of survival.

Publisher

Brno University of Technology

Subject

Computational Mathematics,General Computer Science,Theoretical Computer Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An automated chest X-ray analysis for COVID-19, tuberculosis, and pneumonia employing ensemble learning approach;Biomedical Signal Processing and Control;2024-01

2. Development of abnormal facial temperature detection technology using thermal imaging to prevent the spread of infectious diseases;Journal of King Saud University - Computer and Information Sciences;2023-10

3. An automated system to distinguish between Corona and Viral Pneumonia chest diseases based on image processing techniques;Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization;2023-09-30

4. Automated Classification of Skin Lesions Using Different Classifiers;2023 6th International Conference on Engineering Technology and its Applications (IICETA);2023-07-15

5. Counting Non-Overlapping Abnormal Cervical Cells in Whole Slide Images;2023 6th International Conference on Engineering Technology and its Applications (IICETA);2023-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3