Epileptic Activity Detection using Mean Value, RMS, Sample Entropy, and Permutation Entropy Methods

Author:

CANYURT Ceren1ORCID,ZENGİN Reyhan1ORCID

Affiliation:

1. INONU UNIVERSITY

Abstract

In this study, linear and non-linear signal analysis methods are implemented for epilepsy seizure detection using CHB-MIT EEG data taken from Boston children's hospital. In linear signal analysis, EEG signals are considered linear, although they are not linear. In linear signal analysis methods, root mean square (RMS) and mean of the EEG signals are analyzed. It is detected that the RMS value increased and the mean value moved away from zero in the positive and negative directions during the seizure period. Seizure periods in EEG signals are determined with RMS and mean values with 75 % and 58.4 % accuracy, respectively. Since EEG signals are not linear, the linear analysis is assumed insufficient and so entropy is preferred to linear signal analysis methods. Sample entropy (SmpE) and permutation entropy (PE) are preferred among entropy types. While an increase is observed in the sample entropy values at the beginning of the seizure, a decrease is observed in the permutation entropy values at the same time. When the entropy methods are examined separately, the onset of a seizure is determined with an accuracy of 66.6 % for both methods. However, when the entropy methods are examined together with the increase in the sample entropy value or the decrease in the permutation entropy, the accuracy rate increases to 79.2 % The resultant accuracy rates show that when one entropy method fails to catch the onset of a seizure the other can.

Publisher

Istanbul Technical University

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The assessment method of lip closure ability based on sEMG nonlinear onset detection algorithms;Biomedical Engineering / Biomedizinische Technik;2024-08-08

2. Machine Learning for Epilepsy: A Comprehensive Exploration of Novel EEG and MRI Techniques for Seizure Diagnosis;Journal of Medical and Biological Engineering;2024-06

3. Quantitative ultrasound assessment of healthy and degenerated cartilage;2023 IEEE International Ultrasonics Symposium (IUS);2023-09-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3