Thermodynamics and transport properties of the supercritical fluid of metals
-
Published:2020
Issue:1-2
Volume:49
Page:143-154
-
ISSN:1472-3441
-
Container-title:High Temperatures-High Pressures
-
language:nr
-
Short-container-title:HTHP
Author:
KHOMKIN ALEXANDER L.,SHUMIKHIN ALEKSEY S.
Abstract
The proposed model allows to calculate the composition, thermodynamic and transport properties of the supercritical metal vapors within unified approach. The model includes atoms, immersed in jellium, and thermally ionized electrons and ions. The jellium is the part of the bound states electron density. The density of electron jellium increases with the compression of atomic gas and does not depend on temperature directly. At compression, the electrical conductivity passes through the minimum from the conductivity of thermal electrons to the conductivity of electrons of jellium accordingly. Calculations of the equation of state and the electrical conductivity of supercritical metal vapors agree well with physical and numerical experimental data.
Publisher
Old City Publishing, Inc
Subject
Physical and Theoretical Chemistry,Mechanics of Materials,Condensed Matter Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献