Accessible ranges of turbulent and transitional flow in electromagnetic levitation experiments

Author:

Pauls A. K.,Bracker G. P.,Hyers R. W.

Abstract

Electromagnetic Levitation in reduced gravity has demonstrated great utility in the measurement of thermophysical properties and the study of solidification of metallic melts. Internal flow in the liquid metal samples is a critical parameter in many of these experiments. For example, turbulent flow in the sample prevents measurement of viscosity by the oscillating droplet method, as the measured damping of oscillations is a property of the flow and not of the fluid. In solidification, it has been demonstrated that internal flow changes the lifetime of the metastable phase in stainless steels by almost two orders of magnitude over the experimentally accessible range. For these experiments, the flow was quantified by CFD models; however, these models require as an experimental input whether the flow is laminar or turbulent. To date, the only study of the transition to turbulence in EML comes from experiments on the Space Shuttle in 1997 on MSL-1 TEMPUS on a palladium-silicon alloy. On each melting cycle, tracer particles reveal the laminar or turbulent nature of the flow. However, this phenomenon was only noticed and examined after the flight, so observations are available only for a very narrow range of conditions. As these results were the only ones available, they have been boldly extrapolated to conditions far from the original experiment. Furthermore, while evidence from measurements on germanium shows that the positioner alone can drive turbulent flow, there are no available measurements of the turbulent transition in positioner-dominated flows. On a more fundamental level, EML flows are constrained by the free surface of the drop, like the walls of internal flows. However, the free surface of the EML drop does not support shear stresses, unlike the walls in internal flows. Better quantification of the transition to turbulence in EML flows may lead to insights into the nature of turbulence and turbulent transition. Closing this gap requires a combination of experiments and models that will quantify the turbulent transition over as wide a range of experimental conditions as possible in ISS-EML. Modeling results are presented here; experiments are planned for ISS-EML Batch 4, estimated for 2024.

Publisher

Old City Publishing, Inc

Subject

Physical and Theoretical Chemistry,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3