Ferramentas de machine learning na gestão de doenças crónicas: uma scoping review
-
Published:2023-12-12
Issue:1
Volume:7
Page:1-11
-
ISSN:2184-3791
-
Container-title:Revista de Investigação & Inovação em Saúde
-
language:
-
Short-container-title:RIIS
Author:
Soares-Pinto IgorORCID, Sá Marta Sofia FerreiraORCID, Alves Ana Margarida Martins BastosORCID, Sousa Maria Teresa Barbosa PintoORCID, Carvalho Ana Vanessa FernandesORCID, Moreira CátiaORCID
Abstract
Enquadramento: a implementação de tecnologias baseadas em Inteligência Artificial (IA) na área da saúde, nomeadamente o machine learning (ML), tem causado um efeito transformacional significativo. A sua utilização melhora a previsão de doenças, classificação e diagnóstico, beneficiando os utentes e os profissionais de saúde. Objetivo: mapear as ferramentas de ML para a gestão de doenças crónicas, com relevância para os cuidados de enfermagem à pessoa com doença crónica. Metodologia: scoping review com base nas recomendações do Instituto Joanna Briggs. A pesquisa foi efetuada nas bases de dados MEDLINE Complete via PUBMED, CINAHL Complete via EBSCO, SCOPUS, OpenGrey, RCAAP e DART-Europe, sem limite de temporal. Resultados: foram incluídos sete artigos e identificadas 9 ferramentas de ML associados à gestão de doenças crónicas nomeadamente doença renal crónica, doença pulmonar obstrutiva crónica, hepatite C, insuficiência cardíaca e insuficiência venosa crónica. Conclusão: as ferramentas identificadas têm potencial de contribuir para a melhoria dos cuidados de enfermagem, nomeadamente na identificação de fatores de risco associados a doenças crónicas, detetar precocemente exacerbações, monitorizar e avaliar continuamente a eficácia do tratamento e apoiar a tomada de decisões clínicas.
Publisher
Escola Superior de Saude Norte da Cruz Vermelha Portuguesa
Reference23 articles.
1. Alzghoul, B. N., Reddy, R., Chizinga, M., Innabi, A., Zou, B., Papierniak, E. S., & Faruqi, I. (2020). Pulmonary Embolism in Acute Asthma Exacerbation: Clinical Characteristics, Prediction Model and Hospital Outcomes. Lung, 198(4), 661–669. https://doi.org/10.1007/s00408-020-00363-0 2. Battineni, G., Sagaro, G. G., Chinatalapudi, N., & Amenta, F. (2020). Applications of machine learning predictive models in the chronic disease diagnosis. Journal of Personalized Medicine, 10(2). https://doi.org/10/ghb3w5 3. Chan, K. S., Liang, S., Cho, Y. T., Chan, Y. M., Tan, A. H. M., Muthuveerappa, S., Lai, T. P., Goh, C. C., Joseph, A., Hong, Q., Yong, E., Zhang, L., Chong, L. R. C., Tan, G. W. L., Chandrasekar, S., & Lo, Z. J. (2022). Clinical validation of a MACHINE‐LEARNING ‐based handheld 3‐DIMENSIONAL infrared wound imaging device in venous leg ulcers. International Wound Journal, 19(2), 436–446. https://doi.org/10.1111/iwj.13644 4. Chatterjee, A., Gerdes, M. W., & Martinez, S. G. (2020). Identification of Risk Factors Associated with Obesity and Overweight—A Machine Learning Overview. Sensors, 20(9), 2734. https://doi.org/10.3390/s20092734 5. Corporation for Digital Scholarship and Roy Rosenzweig Center for & History and New Media. (2021). Zotero | Your personal research assistant (Zotero 5.0.94). https://www.zotero.org/
|
|