Impact of ocean acidification and warming on the feeding behaviour of two gastropod species

Author:

CHATZINIKOLAOU EVAORCID,GRIGORIOU PANOS,MARTINI EVANGELIA,STERIOTI ASPASIA

Abstract

Increased atmospheric CO2 produced by anthropogenic activities will be absorbed by the oceans over the next century causing ocean acidification and changes in the seawater carbonate chemistry. Elevated CO2 causes sublethal physiological and behavioural responses on the locomotion and foraging behaviour of marine organisms. This study aims to investigate the independent and synergistic effects of long term exposure to low pH and increased temperature on the feeding behaviour of two gastropod species, Hexaplex trunculus and Nassarius nitidus, both in adults and juveniles. Gastropods were maintained under controlled conditions of temperature (ambient = 20°C, increased = 23°C) and pH (ambient = 8, low = 7.6) for 2.5 years. The percentage of animals which successfully reached their food, the response time until gastropods began moving, the total duration until they reached food and the total distance covered, were measured. Speed and path index (i.e how straightforward the movement is) were estimated as means of foraging efficiency. Increased temperature (under ambient pH) resulted in faster responses, a shorter duration until food was reached and a higher speed in H. trunculus adults. H. trunculus (both adults and juveniles) were less successful in reaching their food source under low pH and ambient temperature in comparison to all other treatments. The response time, duration, speed and path index were not affected by low pH (at ambient or increased temperature) for H. trunculus adults and juveniles, as well as for N. nitidus. The foraging performance of juveniles hatched and developed under low pH (either at ambient or increased temperature) was more effective than adults of the same species, thus indicating a degree of acclimation. Also, the scavenger N. nitidus was more successful and responded faster in reaching carrion than the predator H. trunculus, whereas no significant effects were observed for N. nitidus under low pH.

Publisher

National Documentation Centre (EKT)

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics,Environmental Engineering,Oceanography

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3