Variability of early autumn planktonic assemblages in the strait of Gibraltar: a regionalization analysis

Author:

VALCÁRCEL-PÉREZ NEREAORCID,RAMÍREZ-ROMERO EDUARDOORCID,GARCÍA CARLOS M.,GONZÁLEZ-GORDILLO JUAN IGNACIO,ECHEVARRÍA FIDEL

Abstract

The Strait of Gibraltar (SG) is the only connection of the Mediterranean Sea with the global circulation. The SG is an outstanding marine region to explore physical-biological coupling of pelagic communities due to its hydrodynamic complexity, including strong tidal forcing and marked spatial gradients and fronts. The authors have unravelled the role of the fortnightly tidal scale (spring and neap tides) and local processes (upwelling and tidal-topographic mixing) that shape planktonic assemblages in the Strait. To do so, an oceanographic cruise was taken in early autumn 2008 with a high-resolution grid sampling and spring/neap tidal conditions. The planktonic features were captured using different automatic and semi-automatic techniques of plankton analyses (flow cytometry, FlowCAM, LOPC and Ecotaxa) that allowed covering a wide range of sizes of the community from pico- to mesoplankton. The SG was sectorized into two clusters based on the biogeochemical and main water column properties. Cluster 1 (CL1) covered shallow productive areas around Cape Trafalgar (CT). CL1 presented higher concentrations of chlorophyll and nutrients, and phytoplankton was mostly represented by Synechococcus and coastal diatoms while zooplankton had the highest percentage of meroplankton (31%). In contrast, cluster 2 (CL2) covered open ocean waters and presented more oligotrophic features, i.e. nitrogen-depleted waters with lower chlorophyll concentrations and a picoplankton community dominated by Prochlorococcus and holoplankton predominance in mesozooplankton. Under early autumn conditions with overall nutrient-depleted and stratified waters, the CT area emerges as an ecosystem where the constant tidal mixing and nutrients supply is coupled with an active production also being favored by high residence times and finally shaping a plankton community with unique features in the area.

Publisher

National Documentation Centre (EKT)

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics,Environmental Engineering,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3