Investigation of Boron Addition to Dried Alfalfa In Vitro Ruminal Profile and Potential for Reducing Enteric Methane Emission

Author:

Durna Aydin ÖORCID,Yildiz G,Toygar U

Abstract

The aim of our study is to investigate the effects of increasing doses of boron on methane gas production amounts, short chain fatty acids level, protozoa number and organic matter digestibility in vitro with HFT (Hohenheim Futterwert Test) technique. In vitro incubation was performed in the Hohenheim Gas test method at 39°C for 24 hours in the study. Dried alfalfa was used as substrate for fermentation. Increasing doses of boron were used on fresh rumen fluid, buffer solution and dried alfalfa. In the study, 54 syringes were used for a total of 6 groups, including 1 control and 5 trial ( B1: 25 ppm boric acid, B2: 50 ppm boric acid, B3: 100 ppm boric acid, B4: 200 ppm boric acid, B4: 500 ppm boric acid). The measurement of methane gas at 2, 4, 6, 8, 12 and 24th hours of boric acid addition at increasing doses was found to be significant the difference between the groups at each hour under in vitro rumen conditions. When we look at the effect of the dose; Increasing doses appear to reduce methane production for each measured hour. The difference between the measured hours (except the 24th hour) of each group was not significant. However, the difference between the groups was found to be significant in the methane measurement made only for the 24th hour. At the 24th hour of fermentation under in vitro rumen condition, acetic acid and total short chain fatty acid values were linearly and cubically affected. With increasing doses of boron, propionic acid, isobutyric acid, butyric acid and valeric acid values were linearly affected The total number of protozoa was not affected by the addition of increasing doses of boron at the 24th hour of fermentation under in vitro rumen conditions. Consequently, the addition of boric acid at increasing doses in in vitro rumen conditions decreased methane production and positively affected the amount of some short-chain fatty acids, organic matter digestibility and total short chain fatty acids. In the light of these findings, it was emphasized that boron has the potential to reduce methane emissions from ruminant animals, considering the greenhouse gas effect.

Publisher

National Documentation Centre (EKT)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3