Acoustic scattering properties of seagrass: In/ex-situ measurements of Posidonia oceanica

Author:

MUTLU Erhan,Olguner CansuORCID

Abstract

The marine prairies are paramount to the marine ecosystem playing a crucial role in various ways. Owing to the global atmospheric events inducing hydrospheric changes, marine seaweeds have been negatively affected and are vulnerable. Conventional methods (SCUBA), which were previously used to collect seagrasses, have become a destructive method for deriving unrecoverable damages for their stocks and have been replaced with remote sensing methods. Considering the advantages of the acoustic methods, two different in/ex-situ experiments were conducted to ground-truth the common seagrass, P. oceanica, in time and space of the Turkish Mediterranean water in 2011-2012 using a scientific echosounder with a split beam transducer operated at a frequency of 206 kHz. After the separation of the seagrass from spurious scatterers, the acoustic parameters (Sa: area backscattering strength, Sv: volume backscattering strength, and TS: Target Strength) were correlated and regressed with the biometric variables (Leaf Area Index, biomass, volume, length, width, diameter, or thickness) of different parts (leaf, rhizome, and sheath) of the seagrass. Estimation of biometrics by acoustic methods has been considered a challenge up to now. Statistical relationships between biometrics and acoustics were precisely examined for the species. The relationships were linearly established in the acoustic geometric region. There was a seasonal difference in the relationships. Their rhizomes and sheaths were considered unstable non-linear parts and remained unexplained for the acoustic response. Acoustic response to the leaf density (d, g cm-3), which was a distinguished component in the reflection, was found to be dependent on the seasonal biological activities of P. oceanica. Posidonia, which has a d greater than 1 g/cm3, produced the geometric region. The present study was the first attempt to establish the relationships of the seagrass under protection, and can decrease usage of destructive methods for future studies.

Publisher

National Documentation Centre (EKT)

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics,Environmental Engineering,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3