Fishing the waves: comparing GAMs and random forest to evaluate the effect of changing marine conditions on the energy performance of vessels

Author:

COLOMBELLI ALESSANDRO,PULCINELLA JACOPO,BONANOMI SARA,NOTTI EMILIO,MORO FABRIZIO,SALA ANTONELLO

Abstract

The optimization of consumption and the reduction of gas emissions in fisheries rely on a thorough examination of all factors affecting the energy balance of fishing vessels. Engines, propellers, or the hydrodynamic characteristics of vessels and gears are unquestionably the primary factors affecting this balance, and an improvement in energy efficiency based on these factors is typically attained through technical modifications to existing technologies. Behavioral modifications, such as a reduction in operational speeds or the selection of closer fishing grounds, are another option. There may still be room for improvement in behavioral responses, for instance by adapting fishing strategies in response to changing weather and sea conditions. As far as the authors are aware, the influence of varying sea state and wind conditions on the energy expenditure of fishing vessels has not yet been investigated and is the focus of this research. In this study, wind and wave actions were associated with the observed activity of three fishing vessels operating in the northern Adriatic Sea: an OTB, a PTM, and a TBB trawler. The analysis made use of a comparison between two different approaches, generalized additive models (GAMs) and random forest, in order to quantify the significance of each variable on the response and generate consumption forecasts. In our analysis, the observed influence of predictors was significant albeit occasionally ambiguous. Wave height had the most obvious impact on energy expenditure, with the towing and gear handling phases being the most affected by wave action. Conversely, navigation seemed to be mostly unaffected by significant wave heights up to 1.5 meters, with unclear effects on consumption estimated above this threshold. The relationship between winds and fuel consumption was found to be nonlinear and ambiguous; hence, its significance should be investigated further.

Publisher

National Documentation Centre (EKT)

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics,Environmental Engineering,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3