Asymptotic estimates for the best uniform approximations of classes of convolution of periodic functions of high smoothness

Author:

Serdyuk Anatolii1,Sokolenko Igor1

Affiliation:

1. Institute of Mathematics of the NAS of Ukraine, Kyiv, Ukraine

Abstract

We find two-sided estimates for the best uniform approximations of classes of convolutions of $2\pi$-periodic functions from a unit ball of the space $L_p, 1 \le p <\infty,$ with fixed kernels such that the moduli of their Fourier coefficients satisfy the condition $\sum\limits_{k=n+1}^\infty\psi(k)<\psi(n).$ In the case of $\sum\limits_{k=n+1}^\infty\psi(k)=o(1)\psi(n),$ the obtained estimates become the asymptotic equalities.

Publisher

Institute of Applied Mathematics and Mechanics of the National Academy of Sciences of Ukraine

Reference37 articles.

1. Akhiezer, N. I., Krein, M. G. (1937). On the best approximation of differentiable periodic functions by trigonometric polynomials. Dokl. Akad. Nauk SSSR, 15 (3), 107–112.

2. Baraboshkina, N. A. (2011). L-approximation of a linear combination of the Poisson kernel and its conjugate kernel by trigonometric polynomials. Proc. Steklov Inst. Math., 273 (1), 59–67. https://doi.org/10.1134/s0081543811050063

3. Bushanskii, A. V. (1978). Best harmonic approximation in the mean of certain functions. In: Studies in the theory of approximation of functions and their applications. Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 29–37.

4. Dzyadyk, V. K. (1959). On the best approximation on the classes of periodic functions determined by kernels which are integrals of absolutely monotone functions. Izv. Akad. Nauk SSSR, Ser. Mat., 23 (6), 933–950.

5. Dzyadyk, V. K. (1974). Best approximation on classes of periodic functions defined by integrals of linear combinations of absolutely monotonous kernels. Mat. Zametki, 16 (5), 691–701. https://doi.org/10.1007/bf01149788

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3