Distribution of random motion at renewal instants in three-dimensional space

Author:

Pogorui Anatoliy1,Rodrĭguez-Dagnino Ramón2

Affiliation:

1. Department of Mathematical Analysis, Zhytomyr State University, Zhytomyr, Ukraine

2. School of Engineering and Sciences, Tecnolóogico de Monterrey, Monterrey, México

Abstract

In physics, chemistry, and mathematics, the process of Brownian motion is often identified with the Wiener process that has infinitesimal increments. Recently, many models of Brownian motion with finite velocity have been intensively studied. We consider one of such models, namely, a generalization of the Goldstein--Kac process to the three-dimensional case with the Erlang-2 and Maxwell--Boltzmann distributions of velocities alternations. Despite the importance of having a three-dimensional isotropic random model for the motion of Brownian particles, numerous research efforts did not lead to an expression for the probability of the distribution of the particle position, the motion of which is described by the three-dimensional telegraph process. The case where a particle carries out its movement along the directions determined by the vertices of a regular $n+1$-hedron in the $n$-dimensional space was studied in \cite{Samoilenko}, and closed-form results for the distribution of the particle position were obtained. Here, we obtain expressions for the distribution function of the norm of the vector that defines particle's position at renewal instants in semi-Markov cases of the Erlang-2 and Maxwell--Boltzmann distributions and study its properties. By knowing this distribution, we can determine the distribution of particle positions, since the motion of a particle is isotropic, i.e., the direction of its movement is uniformly distributed on the unit sphere in ${\mathbb R}^3$. Our results may be useful in studying the properties of an ideal gas.

Publisher

Institute of Applied Mathematics and Mechanics of the National Academy of Sciences of Ukraine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3