Affiliation:
1. Institute of Applied Mathematics and Mechanics of NAS of Ukraine, Slov'yansk, Ukraine
Abstract
We find the necessary and sufficient conditions under which an unbounded metric space \(X\) has, at infinity, a unique pretangent space \(\Omega^{X}_{\infty,\tilde{r}}\) for every scaling sequence \(\tilde{r}\). In particular, it is proved that \(\Omega^{X}_{\infty,\tilde{r}}\) is unique and isometric to the closure of \(X\) for every logarithmic spiral \(X\) and every \(\tilde{r}\). It is also shown that the uniqueness of pretangent spaces to subsets of a real line is closely related to the ''asymptotic asymmetry'' of these subsets.
Publisher
Institute of Applied Mathematics and Mechanics of the National Academy of Sciences of Ukraine
Reference12 articles.
1. Abdullayev, F., Dovgoshey, O. & Kucukaslan, M. (2011). Metric spaces with unique pretangent spaces. Conditions of the uniqueness. Ann. Acad. Sci. Fenn. Math., 36(2), рр. 353-392. doi:10.5186/aasfm.2011.3623
2. Altinok, M., Dovgoshey, O. & Kucukaslan, M. (2016). Local one-sided porosity and pretangent spaces. Analysis, Munchen, 36(3), рр. 147-171.
3. Berger, M. (2009). Geometry. I, Berlin, Springer.
4. Bilet, V. & Dovgoshey, O. (2017). Asymptotic behavior of metric spaces at infinity. Dopov. Nac. acad. nauk Ukr., No. 9, рр. 9-14. https://doi.org/10.15407/dopovidi2017.09.009
5. Bilet, V. & Dovgoshey, O. (2018). Finite asymptotic clusters of metric spaces. Theory Appl. Graphs, 5(2), рр. 2-33.