Logarithmic potential and generalized analytic functions

Author:

Gutlyanskii Vladimir1,Nesmelova Olga1,Ryazanov Vladimir1,Yefimushkin Artyem1

Affiliation:

1. Institute of Applied Mathematics and Mechanics of NAS of Ukraine, Sloviansk, Ukraine

Abstract

The study of the Dirichlet problem in the unit disk $\mathbb D$ with arbitrary measurable data for harmonic functions is due to the famous dissertation of Luzin [31]. Later on, the known monograph of Vekua \cite{Ve} has been devoted to boundary-value problems (only with H\"older continuous data) for the generalized analytic functions, i.e., continuous complex valued functions $h(z)$ of the complex variable $z=x+iy$ with generalized first partial derivatives by Sobolev satisfying equations of the form $\partial_{\bar z}h\, +\, ah\, +\ b{\overline h}\, =\, c\, ,$ where it was assumed that the complex valued functions $a,b$ and $c$ belong to the class $L^{p}$ with some $p>2$ in smooth enough domains $D$ in $\mathbb C$. The present paper is a natural continuation of our previous articles on the Riemann, Hilbert, Dirichlet, Poincar\'{e} and, in particular, Neumann boundary-value problems for quasiconformal, analytic, harmonic, and the so-called $A-$harmonic functions with boundary data that are measurable with respect to logarithmic capacity. Here, we extend the corresponding results to the generalized analytic functions $h:D\to\mathbb C$ with the sources $g$ : $\partial_{\bar z}h\ =\ g\in L^p$, $p>2\,$, and to generalized harmonic functions $U$ with sources $G$ : $\triangle\, U=G\in L^p$, $p>2\,$. This paper contains various theorems on the existence of nonclassical solutions of the Riemann and Hilbert boundary-value problems with arbitrary measurable (with respect to logarithmic capacity) data for generalized analytic functions with sources. Our approach is based on the geometric (theoretic-functional) interpretation of boundary-values in comparison with the classical operator approach in PDE. On this basis, it is established the corresponding existence theorems for the Poincar\'{e} problem on directional derivatives and, in particular, for the Neumann problem to the Poisson equations $\triangle\, U=G$ with arbitrary boundary data that are measurable with respect to logarithmic capacity. These results can be also applied to semi-linear equations of mathematical physics in anisotropic and inhomogeneous media.

Publisher

Institute of Applied Mathematics and Mechanics of the National Academy of Sciences of Ukraine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Dirichlet problem for beltrami equations with sources in simply connected domains;Reports of the National Academy of Sciences of Ukraine;2024-02-27

2. On divergence type linear and quasilinear equations in the complex plane;Ukrainian Mathematical Bulletin;2023-12-20

3. The Dirichlet problem for the Beltrami equations with sources;Ukrainian Mathematical Bulletin;2023-03-28

4. On the Hilbert problem for semi-linear Beltrami equations;Ukrainian Mathematical Bulletin;2023-01-30

5. On boundary-value problems for semi-linear equations in the plane;Journal of Mathematical Sciences;2021-10-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3