On the surfaces moduli theory

Author:

Ryazanov Volodymyr1,Sevost'yanov Evgeny2

Affiliation:

1. Institute of Applied Mathematics and Mechanics of NAS of Ukraine, Sloviansk, Ukraine

2. Zhytomyr Ivan Franko State University, Zhytomyr, Ukraine Institute of Applied Mathematics and Mechanics of NAS of Ukraine, Sloviansk, Ukraine

Abstract

In this article we continue to develop the theory of several moduli of families of surfaces, in particular, strings (open surfaces) of various dimensions in Euclidean spaces. Since the surfaces in question can be extremely fractal (wild), the natural basis for studying them is the so-called Hausdorff measures. As is known, these moduli are the main geometric tool in the mo\-dern mapping theory and related topics in geometry, topology and the theory of partial differential equations with appropriate applications to the boundary-value problems of mathematical physics in anisotropic and inhomogeneous media. In addition, this theory can also find its further applications in many other fields, including mathematics itself (nonlinear dynamics, minimal surfaces), theoretical physics (conformal field theory, string theory), and engineering (mathematical models of the filtration of gases and fluids in underground mines of water, gas and oil seams, crystal growth and others). On the basis of the proof of Lemma~1 about the connections between moduli and the Lebesgue measures, we have proved the corresponding analogue of the Fubini theorem in the terms of the moduli that extends the known V\"ais\"al\"a theorem for families of curves to families of surfaces of arbitrary dimensions. It is necessary to note specially here that the most refined place in the proof of Lemma~1 is Proposition~1 on measurable (Borel) hulls of sets in Euclidean spaces. We also prove here the corresponding Lemma~2 and Proposition~2 on families of centered spheres. Finally, in a similar way, suitable results can be also obtained for families of several spheroids.

Publisher

Institute of Applied Mathematics and Mechanics of the National Academy of Sciences of Ukraine

Subject

General Engineering

Reference11 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3