On one extremal problem for nonlinear Cauchy-Riemann-Beltrami systems

Author:

Salimov Ruslan1,Stefanchuk Mariia1

Affiliation:

1. Institute of Mathematics of the NAS of Ukraine, Kyiv, Ukraine

Abstract

The study of nonlinear Cauchy--Riemann--Beltrami systems is conditioned study of certain problems of hydrodynamics and gas dynamics, in which there is an inhomogeneity of media and a certain singularity. The paper considers a nonlinear Cauchy--Riemann--Beltrami type system in the polar coordinate system in which the radial derivative is expressed through the complex coefficient, the angular derivative and its m-degree module. In particular, if m is equal to zero, then this system of equations is reduced to the ordinary linear system of Beltrami equations. Note that general first-order systems were used by M.А. Lavrentyev to define quasiconformal mappings on the plane, see \cite{L}. The problem of area distortion under quasi-conformal mappings is due to the work of B. Boyarsky, see \cite{Bo}. For the first time, the upper estimate of the area of the disk image under quasi-conformal mappings was obtained by M.А. Lavrentyev, see \cite{L}. A refinement of the Lavrentyev inequality in terms of the angular dilatation was obtained in the monograph \cite{BGMR}, see Proposition 3.7. In the present paper, it is found an exact upper estimate of the area of the image of the disk, which is analogous to the known result by Lavrentyev. Also, we find here a mapping on which the estimate is achieved. Thus, the work solves the extreme problem for the area functional of the image of disks under a certain class of regular homeomorphic solutions of nonlinear systems of the Cauchy--Riemann--Beltrami type with generalized derivatives integrated with a square. The work uses p-angular dilatation. In the conformal case, angular dilatation is important in the theory of quasi-conformal mappings and nondegenerate Beltrami equations. Proof of the main result of the article is based on the differential relation for the area function of the image of disks of arbitrary radii, which was established in the previous work of the authors for regular homeomorphisms with Luzin's N-property.

Publisher

Institute of Applied Mathematics and Mechanics of the National Academy of Sciences of Ukraine

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3