Analysis of Meta-Heuristic Feature Selection Techniques on classifier performance with specific reference to psychiatric disorder

Author:

Singh Chandrabhan,Gangwar MohitORCID,Kumar UpendraORCID

Abstract

Optimization plays an important role in solving complex computational problems. Meta-Heuristic  approaches work as an optimization technique. In any search space, these approaches play an excellent role in local as well as global search. Nature-inspired approaches, especially population-based ones, play a role in solving the problem. In the past decade, many nature-inspired population-based methods have been explored by researchers to facilitate computational intelligence. These methods are based on insects, birds, animals, sea creatures, etc. This research focuses on the use of Meta-Heuristic methods for the feature selection. A better optimization approach must be introduced to reduce the computational load, depending on the problem size and complexity. The correct feature set must be chosen for the diagnostic system to operate effectively. Here, population-based Meta-Heuristic optimization strategies have been used to pick the features. By choosing the best feature set, the Butterfly Optimization Algorithm (BOA) with the Enhanced Lion Optimization Algorithm (ELOA) approach would reduce classifier overhead. The results clearly demonstrate that the combined strategy has higher performance outcomes when compared to other optimization strategies.  

Publisher

International Journal of Experimental Research and Review

Subject

Health, Toxicology and Mutagenesis,Plant Science,Agricultural and Biological Sciences (miscellaneous),Environmental Science (miscellaneous),Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparative Analysis of Meta-heuristic Feature Selection and Feature Extraction Approaches for Enhanced Chronic Kidney Disease Prediction;2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI);2024-03-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3