Reliability of Response-Controlled Stepped Sine Testing for Experimental Detection of Nonlinear Structure

Author:

Yunus M. A.,A.R. Bahari ,M.N. Abdul Rani ,Z. Yahya ,M.A. Rahim

Abstract

Nonlinear structural dynamic analysis is required for mechanical structures experiencing nonlinearity through large force-vibration response ranges. Nonlinearities can be caused by large vibration displacements, material properties, or joints. Experimental modal analysis for nonlinear detection is achieved using conventional force-controlled stepped sine testing. However, this approach often encounters premature jumps in frequency response curves before reaching actual resonance peaks. In recent years, response-controlled stepped sine testing (RCT) has been introduced to precisely quantify resonant peaks. This approach, however, has only been limitedly utilised to detect and analyse nonlinearity in jointed structures and structures experiencing large displacement. In this paper, the reliability of the RCT approach is assessed for detecting nonlinearity from different sources. The experimental setup involves placing two magnets on opposite sides of a plate's free end to induce localised nonlinearity through magnet attraction. A low force magnitude of random excitation is employed to identify the frequency range of the first vibration mode using an electromagnetic shaker. Subsequently, RCT is performed within this range to measure the nonlinear forced response. Frequency response functions are measured at ten different controlled displacement amplitudes at the driving point. The analysis observed a symmetry curve of response in the measured FRFs. The results indicate that nonlinear hardening is detected at structures with localised magnet attraction. In conclusion, the reliability of applying the RCT approach for detecting nonlinearity from magnet attraction is achieved due to the absence of a jump issue in FRFs.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Mechanical Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3