Effect of Turning Parameter and Fiber Pullout on Machinability of Unidirectional EGFRP under Cryogenic Condition

Author:

NARESH HAZARI,Padhy Dr Chinmaya

Abstract

The non-homogeneous and anisotropic nature of composites poses challenges during machining, requiring the use of specialized cutting tools. GFRP materials were selected for their excellent elasticity, corrosion resistance, and high strength, making them ideal for applications in the aerospace and automotive industries. In this work, the surface quality of UD-GFRP composite bars during CNC machining in diverse machining conditions (dry, wet, and cryogenic) was investigated while considering the fiber-pullout issue. The UD-EGFRP composite materials have been machined with a polycrystalline diamond tool. The Taguchi-L9 orthogonal-array technique is used to investigate and further analysis. Three independent-variables feed rate, rotational speed or cutting speed, and depth of cut have been taken into account for their optimal design to get better machinability of EGFRP. This study also investigates the delamination criterion in composites and establishes the correlation between its input parameters and output responses. The findings revealed that cryogenic machining led to a notable improvement of 25.21% in surface roughness compared to the other lubrication methods. Also, the reduction from 84 µm to 34 µm in fiber-pullout signifies that cryogenic cooling effectively mitigated the occurrence of fiber-pullout.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Mechanical Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3