Energy and Exergy Investigation of a Solar Air Heater for Different Absorber Plate Configurations

Author:

Al-Dulaimi Mustafa J,Areej H. Hilal ,Husam A. Hassan ,Faik A. Hamad

Abstract

In this paper, the effect of using different configurations of absorber plate, including one line finned flat absorber and two lines finned absorber plate, on the thermal performance of a flat plate – double passing solar air heater was investigated experimentally. L- shape fins are soldered on the absorber plate to roughen the absorber plate and generate vortices to enhance the heat transfer between the working fluid (air) and absorber plate to improve the thermal efficiency. The outdoor experimental test was carried out during February and May under the weather conditions of Baghdad city (Longitude 33.3 N and Latitude 44.44 E). The results show that the air temperature is 48 ℃, 47.5 ℃, and 58.5 ℃ at an air velocity of 1.7 m/s for a single line of fins which increased to 52 ℃, 57.5 ℃, and 66 ℃ at air velocity of 0.9 m/s for two lines of fins. The efficiency is increased by 28% for one line of fins and 66% for two lines of fins at an air velocity of 0.9 m/s while increased by 27% for one line of fins and 51% for two lines of fins at an air velocity of 1.7 m/s. The average exergy destruction rate increases by 37.6%, 60.6%, and 68.66% for the absorber plate, working fluid, and glass cover, respectively, for velocity increase from 0.9 m/s to 1.9 m/s. The exergy efficiency increased by 24.1% when the velocity increased from 0.9 m/s to 1.9 m/s.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Mechanical Engineering,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3