Investigation of the Performance of Plugging Braking System as a Hill Descent Control (HDC) for Electric-Powered Wheelchair

Author:

Heerwan P. M.,Shahrom M. A.,Ishak M. I.,Kato H.,Narita T.

Abstract

Recently, a study on Electric Powered Wheelchairs (EPWs) has become significant because they can enhance the mobility of individuals with disabilities. One of the issues on EPW is during descending on a slope because it is difficult to control the speed and prevent it from slipping. Moreover, the manual braking system is frequently used for speed control by pressing the brake lever. The complexity of the task increases significantly when dealing with elderly or paralyzed users with physical limitations. Consequently, the risk of collisions and injuries is elevated. This research seeks to develop a hill descent control (HDC) system for an EPW to address these challenges. By implementing HDC into EPW, the EPW's speed can be controlled, thus increasing the safety of the EPW while descending on the slope. In this study, the plugging brake system is introduced as a hill descent control (HDC) mechanism to inhibit the acceleration of the EPW and ensure it maintains a constant speed during downhill descents. The plugging voltage will be controlled based on the desired speed of 0.6 m/s. To maintain the speed of the EPW, the PID control is used as a control strategy for HDC. The simulation work in Matlab Simulink has analyzed the performance of the plugging brake system with HDC. The results obtained from the simulation reveal that, despite starting with a high initial braking speed of 2.5 m/s, the Electric Powered Wheelchair (EPW) can consistently maintain its velocity at the desired target value of v_d = 0.6 m/s during the descent on the slope. Furthermore, the amplitude response for the PID control shows the settling time is 2.3 s, and the steady-state error is ±0.05. Based on the simulation results, it can be approved that the proposed HDC in the plugging brake system can prevent the EPW from accelerating while descending on the slope and improve the safety of the EPW.

Publisher

Universiti Malaysia Pahang Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3