Modeling and Simulation of a Battery/Supercapacitor Hybrid Power Source for Electric Vehicles

Author:

Chen Changlei,Ren Guizhou

Abstract

Environmental protection and energy conservation have become highly concerning themes. In the transportation field, green electric vehicles (EVs) are rapidly being promoted and applied, and power sources, as one of the core technologies, greatly affect the working performances of EVs. Currently, a single battery power supply is the mainstream configuration for EVs, but the instantaneous/short-term high-power output required by the battery for vehicle working conditions has a serious impact on the service life of the battery. As an effective solution, the battery/super-capacitor (SC) hybrid power source (HPS) has attracted increasing attention. This article proposes an improved semi-active battery/SC HPS, which can achieve multiple operating modes and fully utilize the advantages of the two power sources to effectively protect the battery. A fitness function is established with the optimization objective of minimizing the HPS cost and the number of cells in SC and battery as control variables. A genetic algorithm (GA) is adopted to optimize the HPS configuration based on the power required of the New European Driving Cycle (NEDC) working condition. The optimized number of battery cells is 777, much smaller than the 1191 calculated based on theoretical formulas. Additionally, a logic threshold strategy is introduced to flexibly control the collaborative work of the two power sources and achieve effective energy management. The availability of the presented control method of HPS in various working modes is verified through MATLAB/Simulink-based modeling and simulation. This work provides a theoretical reference for the application research of HPS in EVs.

Publisher

Universiti Malaysia Pahang Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3