Investigation of Brake Pad Wear Impact on Autonomous Emergency Braking Pedestrian Performance on Wet Road Conditions

Author:

Abdullah Zulkifli,Heerwan P M,Zakaria M A,Ishak M I

Abstract

This study presents an investigation of autonomous emergency braking pedestrian (AEB-P) system performance during harsh braking on wet road pavement. The system was designed to consider a pedestrian walking in front of the host vehicle. The performance of the AEB-P system would degrade immediately as the pads on the brakes become worn, and the vehicle continues to brake on a wet road surface. The vehicle conditional artificial potential field (VC-APF) is an innovative approach for motion planning in the AEB-P introduced in this work. The simulation was performed to explore the impact of brake pad degradation on VC-APF effectiveness on wet road pavement. The first evaluation involved a test to evaluate the effectiveness of the risk assessment in the AEB-P system when encountering a moving obstacle (pedestrian). The second test evaluated VC-APF performance, for instance, the vehicle's safety distance when the vehicle performed hard braking at 0.4, 0.35, and 0.24 brake pad friction coefficients. The third evaluation focused on the vehicle’s speed behavior during deceleration at various brake pad friction coefficients. The simulation results showed that while braking at 0.4 and 0.35 brake pad friction coefficients, the vehicle maintained a minimum safety distance of 1.5 m and 0.69 m from a pedestrian on wet road pavement, respectively. However, the brake pad friction coefficient of 0.24 failed to prevent the vehicle from crashing. The findings indicate that an exhausted brake pad reduces the vehicle's safety.

Publisher

Universiti Malaysia Pahang Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3