Influence of Active Flow Control on Blunt-Edged VFE-2 Delta Wing model

Author:

Madan I.,Tajudin N.,Said M.,Mat S.,Othman N.,Wahid M.A.,Mohamed Radzi N.H.,Miau J.J.,Chen Y.R.,Chen L.Y.

Abstract

This paper highlights the flow topology above blunt-edged delta wing of VFE-2 configuration when an active flow control technique called ‘blower’ is applied in the leading edge of the wing. The flow topology above blunt-edged delta wing is very complex, disorganised and unresolved compared to sharp-edged wing. For the sharp leading-edged wing, the onset of the primary vortex is fixed at the apex of the wing and develops along the entire wing towards the trailing edge. However, the onset of the primary vortex is no longer fixed at the apex of the wing for the blunt-edged case. The onset of the primary vortex develops at a certain chord-wise position and it moved upstream or downstream depending on Reynolds number, angle of attack, Mach number and the leading-edge bluntness. An active flow control namely ‘blower’ technique has been applied in the leading edge of the wing in order to investigate the upstream/downstream progression of the primary vortex. This research has been carried out in order to determine either the flow on blunt-edged delta wing would behave as the flow above sharp-edged delta wing if any active flow control is applied. The experiments were performed at Reynolds number of 0.5×106, 1.0×106 and 2.0×106 corresponding to 9 m/s, 18 m/s and 36 m/s in UTM Low Speed wind Tunnel based on the mean aerodynamic chord of the wing. The results obtained from this research have shown that the blower technique has significant effects on the flow topology above blunt-edged delta wing. The main observation from this study was that the primary vortex has been shifted 20% upstream when the blower technique is applied. Another main observation was the ability of this flow control to delay the formation of the vortex breakdown.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Mechanical Engineering,Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3