Weight Optimisation of Electric Vehicle through Hybrid Structural Batteries

Author:

Akbar Faraz

Abstract

This paper contributes towards the research and development campaign on the weight reduction of electric vehicles through the technology of structural composite batteries. Batteries are the key component and an integral part of electric vehicles which constitutes a major proportion of the vehicle’s weight. Most of the electric vehicle manufacturers use lithium-ion batteries which are in recent years have gone through a major development. The use of lithium-ion batteries within a carbon reinforced composite structure of the car has given rise to the concept of structural batteries where both the mechanical strength of the structure and the chemistry of the battery to be optimized. Various aspects of design in the formulation of the structural batteries are reviewed including material selection with respect to its electrical and mechanical requirements. In this research work, properties of carbon fiber are utilised which provide mechanical strength to the vehicle whilst be an efficient electrode for the lithium-ion structural batteries. The impacts of lithiation on the strength of the structure and charge time for the batteries are explored. Significant results of weight reduction have been achieved by formulating the structural battery for the roof of a passenger car having a 30 kW-hr battery. At 0.7 mm of active electrode thickness is designed within the roof structure, the roof can store 5.9 kW-hr of energy with the reduction of 56.5 kg in overall weight of the vehicle. The battery pack of 255 kg gets completely replaced by the structural composite battery because of its magnificent specific charge capacity at the active electrode with the thickness of 3.5 mm.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Mechanical Engineering,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3