Effect of TiO2/MO Nano-lubricant on Energy and Exergy Savings of an Air Conditioner using Blends of R22/R600a

Author:

Razzaq M.E. AbdurORCID,Ahamed J. U.,Hossain M.A. M.

Abstract

This experimental study determines the energetic and exergetic performances of an air conditioner using blend of R22/R600a (60:40 by mass) for different volume fractions (0.1 %, 0.2 %, 0.3 %, and, 0.4 %) of TiO2 nanoparticles dispersed into mineral oil (MO). Energetic and exergetic parameters investigated in this experiment including power consumption, cooling effect, discharge pressure and temperature, coefficient of performance (COP), exergy destruction (irreversibility), irreversibility in the component, sustainability index (SI) and exergy efficiency at different operating conditions. The k-type thermocouples and pressure gauge were used to measure the temperature and pressure at different locations of the air conditioner. Thermodynamic characteristics of the refrigerant were collected using REFPROP 7. Results showed that the lowest power consumption and total exergy destruction were observed in the system with 0.4% volume fraction of TiO2 nanoparticles charge in the TiO2/MO lubricant with refrigerant blend; these values of energy consumption and total exergy destruction were 12.76 % and 7.5 % respectively, which is lower than R22/Polyol ester (POE) lubricant. The COP for the blend was increased by 6.5% to 8.3% compared to R22 and with nano-lubricant COP for the blend was increased by 17.9% to 19.9% compared to R22/POE. The air conditioner using blend charge with 0.4% TiO2/MO lubricant has the maximum COP and exergy efficiency among the selected nano-lubricants. These values of COP and exergy efficiency were 19.9 % and 35.07 % respectively, greater than that of R22/POE. Again, compressor discharge temperature was found to be decreased with the introduction of nano-lubricants compared to the original system, and the expectancy of compressor life may be extended with TiO2/MO nano-lubricant. Among the components, the compressor was found to be maximum exergy destroyer (at 60 %), followed by the condenser (at 25.4 %) and evaporator (at 13.3 %). Overall, the study found that refrigerant blend with nano-lubricant minimised the energy consumption and exergy destruction and the system operated safely with nano-lubricant without any system modification.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Mechanical Engineering,Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3