Parameter Optimisation in Vibration Assisted Turning of Ti6Al4V Alloy using ANOVA and Grey Relational Analysis

Author:

Sivareddy D. Venkata,Krishna P. Vamsi,Gopal A. Venu,Prithvi Raz C. L.

Abstract

The machining of Ti6Al4V alloy with vibration assisted turning (VAT) is an effective consideration to control the surface integrity of machined components. The effect of cutting and vibrating parameters in a VAT on cutting force, cutting temperature, equivalent stress and compressive maximum circumferential residual stress (MCRS) was studied in the present work. The parameter optimisation of a VAT of Ti6Al4V alloy was achieved with Taguchi based analysis of variance (ANOVA) and grey relational analysis (GRA). The input parameters considered for optimisation of VAT process are cutting speed, feed rate, frequency and amplitude. The finite element (FE) simulations were performed with commercial FE code, ABAQUS. The result shows that the vibrating parameters (frequency and amplitude) play a significant role than cutting parameters (speed and feed rate) in VAT process. The optimum condition for each output response was determined from ANOVA. The optimum condition obtained at 30 m/min of cutting speed, 150 μm of amplitude, 600 Hz of frequency and 0.05 mm/rev of feed rate for cutting force, cutting temperature and MCRS (compressive) while the optimum condition for equivalent stress is 30 m/min of cutting speed, 100 μm of amplitude, 600 Hz of frequency and 0.05 mm/rev of feed rate. The GRA suggests the combination of process parameters 30 m/min of cutting speed, 150 μm of amplitude, 600 Hz of frequency and 0.05 mm/rev of feed rate provides the optimum response.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Mechanical Engineering,Automotive Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. OVERALL ASSESSMENT OF DEFORMATION AND FORCE OF DIAPHRAGM WALL JOINTS DURING THE STAGES OF DEEP EXCAVATION CONSTRUCTION;International Journal for Computational Civil and Structural Engineering;2024-06-28

2. Multi Objective Parametric Optimization of Ultrasonic Vibration Assisted Turning on TI6AL4V Alloy;Materials Science Forum;2023-09-27

3. Effect of Laser-Textured Surface of Ti6Al4V on Frictional Wear Behavior;International Journal of Automotive and Mechanical Engineering;2023-03-30

4. Experimental Investigation on Flank Wear of the Tool in Ultrasonic Vibration-Assisted Turning of Ti6Al4V Alloy;Smart and Sustainable Manufacturing Systems;2021-03-25

5. An Investigation on Surfactant Added PMWEDM of Inconel 718;International Journal of Automotive and Mechanical Engineering;2020-10-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3